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Summary. We present 3 mapping/flattening techniques for triangulations of poor
quality triangles. The implementation of those mappings as well as the boundary
conditions are presented in a very comprehensive manner such that it becomes
accessible to a wider community than the one of computer graphics. The resulting
parameterizations are used to generate new triangulations or quadrilateral meshes
for the model that are of high quality.

1 Introduction

There are two kind of applications for which it might be desirable to remesh
a 3D surface (see Fig. 1).

The first application concerns medical geometries that are often described
only by a triangulation (in stereolitography STL format). This triangulation
is the result of a segmentation procedure from the CT scan or MRI dicom-
images. Those triangulations can be oversampled and have triangles of poor
quality with small elementary angles. Those low quality meshes are not suit-
able for finite element simulations since the quality of the mesh will impact
both on the accuracy and efficiency of the numerical method [35, 2]. In this
case, it is desirable to build a high quality mesh from those low quality meshes
before performing any numerical simulation.

The other application is about CAD models. CAD models are often made
of a huge amount of patches that have no physical significance and a straight-
forward meshing of those patches often leads to meshes that are not suitable
for finite element simulations. Indeed, as most surface mesh algorithms mesh
model faces individually, mesh points are generated on the bounding edges
of those patches and if thin CAD patches exist in the model they will result
in the creation of small distorted triangles with very small angles (Fig.2).
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Fig. 1. Examples of geometries for which a remeshing procedure is desirable. Left
figure shows an example of an oversampled STL triangulation resulting from a mesh
segmentation of a human pelvis and right figure shows the straightforward meshing
of a CAD geometry of a maxi-cosi.

Those low quality elements present in the surface mesh will often hinder the
convergence of the FE simulations on those surface meshes. Besides, they also
prevent the generation of quality volumetric meshes for three-dimensinal finite
element computations (CFD, structure mechanics, etc.). An efficient manner
to build a high quality mesh for those CAD models is then to build from the
initial CAD mesh a cross-patch parametrization that enables the remeshing
of merged patches.

Fig. 2. Example of 2 patches of a CAD geometry (left) for which the mesh (right)
contains a very small triangle of poor quality.

There are mainly two approaches for surface remeshing: mesh adaptation
strategies [18, 3, 38] and parametrization techniques [6, 40, 26, 36, 19, 22].
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Mesh adaptation strategies use local mesh modifications in order both to im-
prove the quality of the input surface mesh and to adapt the mesh to a given
mesh size criterion. In parametrization techniques, the input mesh serves as a
support for building a continuous parametrization of the surface. (In the case
of CAD geometries, the initial mesh can be created using any off the shelf
surface mesher for meshing the individual patches.) Surface parametrization
techniques originate mainly from the computer graphics community: they have
been used extensively for applying textures onto surfaces [5, 23] and have
become a very useful and efficient tool for many mesh processing applica-
tions [9, 15, 21, 33, 12]. In the context of remeshing procedures, the initial
surface is parametrized onto a surface in R2, the surface is meshed using any
standard planar mesh generation procedure and the new triangulation is then
mapped back to the original surface [8, 27].

The existing methods for discrete parametrization can be classified as fol-
lows: linear, non-linear and hybrid methods. Non-linear methods based on
discrete or differential-geometric non-linear distortion measure [17, 34, 41] of-
fer strong guarantees on the absence of triangle folding and flipping at the cost
of a generally higher computational effort. Some authors have also suggested
hybrid techniques that linearize those non-linear measures at the cost of only
a few linear solves [4, 39]. Linear methods require only the resolution of a
single linear system. Most methods require to map the vertex of the patch
boundary to a given polygon (usually convex) in the parametric plane. This
is for example the case of the discrete harmonic map introduced by Eck [8]
or the more robust convex combination map of Floater [9]. Some authors also
suggested extensions to free boundaries by pinning down only two vertices.
This is the case for example in the least square conformal maps (LSCM) intro-
duced by Levy et al. [21] and the discrete conformal parametrizations (DCP)
of Desbrun et al. [1]. These mappings could achieve lower angle distortion
than previous results. However, as the quality of the parametrization can de-
pend significantly on the choice of the constrained vertices, Mullen et al. [28]
suggested to spread the constraints throughout the mesh by constraining that
the barycenter of the mapping must be at (0, 0) and that the moment of iner-
tia of the boundary must be unit. In [28], those spread constraints are taken
into account through recourse to spectral theory.

In this paper, we present and compare three different types of linear har-
monic maps for the discrete parametrization of triangulated surfaces. The
implementation of those mappings as well as the boundary conditions are
presented in a very comprehensive manner such that it becomes accessi-
ble to a wider community than the one of computer graphics. The discrete
parametrization aims at computing the discrete mapping u(x) that maps ev-
ery triangle of the three dimensional surface S to another triangle of S ′ that
has a well known parametrization:

x ∈ ST ⊂ R3 7→ u(x) ∈ S ′T ⊂ R2 (1)
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We restrict ourselves to the parametrization of non-closed triangulated sur-
faces since we have already presented in previous papers [25, 24] efficient
techniques to split a closed object into a series of different patches in the
context of surface remeshing.

The overall procedure is implemented in the open-source mesh generator
Gmsh [14].

2 Harmonic energy minimizations

A harmonic map minimizes distortion in the sense that it minimizes the
Dirichlet energy of the mapping u(x):

ED(u) =

∫
M

1

2
|∇u|2 ds. (2)

subject to Dirichlet boundary conditions u = uD on ∂Mi. Harmonic maps
are not in general conformal and do not preserve angles but they are popular
since they are very easy to compute and are guaranteed to be one-to-one for
convex regions [29, 7].

3 Convex combination map

In contrast to the continuous harmonic map (2), Floater et al. showed in
[10, 11] that the discrete version of (2) is not always one-to-one. To ensure
a discrete maximum principle, the authors introduced a convex combination.
One particular type of convex combination maps is for example the barycentric
mapping by Tutte [37] that asks every interior vertex ui be the barycenter of
its neighbors.

ui =

di∑
k=1

λkuj ,

di∑
k=1

λk = 1, (3)

where di denotes the number of vertices that are neighbors to node i.

4 Least Square Conformal map

The least square conformal map as introduced by Levy at al. [21] asks that
the gradient if u and the gradient of v be as orthogonal as possible in the
parametrization and have the same norm. This can bee seen as an approx-
imation of the Cauchy-Riemann equations. For a piecewise linear mapping,
the least square conformal map can be obtained by minimizing the energy:

ELSCM(u) =

∫
M

1

2

∣∣∇u⊥ −∇v∣∣2 ds, (4)
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where ⊥ denotes a counterclockwise 90◦ rotation in S. For a 3D surface defined
by a normal vector n, the counterclockwise rotation of the gradient can be
written as: ∇u⊥ = n×∇u (see Fig.3).

n

∇u
∇v

iso-v
iso-u

S

u(x)

iso-u

iso-v

S ′

z
y

x
∇u⊥ = n×∇u

Fig. 3. Definitions for a conformal mapping. ∇u⊥ denotes the counterclockwise 90◦

rotation of the gradient ∇u for a 3D surface.

Equation (4) can be simplified and rewritten as follows:

ELSCM(u) =

∫
M

1

2

(
∇u⊥ · ∇u⊥ +∇v · ∇v − 2∇u⊥ · ∇v

)
ds

=

∫
M

1

2
(∇u · ∇u+∇v · ∇v − 2 (n×∇u) · ∇v) ds.

, (5)

Recalling the idenity that a “dot” and a “cross” can be interchanged with-
out changing the result, we have

ELSCM(u) =

∫
S

1

2
(∇u · ∇u+∇v · ∇v − 2n · (∇u×∇v)) ds. (6)

5 Discrete harmonic maps with finite elements

We now derive the finite element formulation of the quadratic minimisation
problems (2)-(4). We denote by the functional J either the Derichlet energy
ED or the least-square conformal energy ELSCM to be minimized:

min
u∈U(M)

J(u), with U(S) = {u ∈ H1(S), u = uD(x) on ∂Mi}. (7)

We assume the following finite expansions for u

uh(x) =
∑
i∈I

uiφi(x) +
∑
i∈J

uD(xi)φi(x) (8)
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where I denotes the set of nodes of M that do not belong to the Dirichlet
boundary, where J denotes the set of nodes of M that belong to the Dirichlet
boundary and where φi are the nodal shape functions associated to the nodes
of the mesh. We assume here that the nodal shape function φi is equal to 1
on vertex xi and 0 on any other vertex: φi(xj) = δij .

Thanks to expansion Eq. (8), the functional J defining the energy of the
least square conformal map Eq. (6) can be rewritten as

J(u1, . . . ,uN ) =
1

2

∑
i∈I

∑
j∈I

uiuj

∫
M

∇φi · ∇φj ds+
∑
i∈I

∑
j∈J

uiuD(xj)

∫
M

∇φi · ∇φj ds+

1

2

∑
i∈I

∑
j∈I

vivj

∫
M

∇φi · ∇φj ds+
∑
i∈I

∑
j∈J

vivD(xj)

∫
M

∇φi · ∇φj ds+

∑
i∈I

∑
j∈J

uD(xi)uD(xj)

∫
M

∇φi · ∇φj ds+
∑
i∈I

∑
j∈J

vD(xi)vD(xj)

∫
M

∇φi · ∇φj ds−

∑
i∈I

∑
j∈J

uivj

∫
M

n · (∇φi ×∇φj) ds−
∑
i∈I

∑
j∈J

uD(xi)vj

∫
M

n · (∇φi ×∇φj) ds−

∑
i∈I

∑
j∈J

uivD(xi)

∫
M

n · (∇φi ×∇φj) ds−
∑
i∈I

∑
j∈J

uD(xi)vD(xi)

∫
M

n · (∇φi ×∇φj) ds.(9)

In order to minimize J , we can simply cancel the derivative of J with
respect to uk

∂J

∂uk
=
∑
j∈I

uj

∫
M

∇φk · ∇φj ds︸ ︷︷ ︸
Akj

+
∑
j∈J

uD(xj)

∫
M

∇φk · ∇φj ds︸ ︷︷ ︸
Akj

−

∑
j∈I

vj

∫
M

n · (∇φk ×∇φj) ds︸ ︷︷ ︸
Ckj

−
∑
j∈I

vD(xj)

∫
M

n · (∇φk ×∇φj) ds︸ ︷︷ ︸
Ckj

= 0 , ∀k ∈ I. (10)

The same can be done for the derivative with respect to vk.
There are as many equations (10) as there are nodes in I. This system of

equations can be written as:( ¯̄A ¯̄C
¯̄CT ¯̄A

)(
Ū
V̄

)
=

(
0̄
0̄

)
(11)

where ¯̄A is a symmetric positive definite matrix and ¯̄C is an antisymmetric
matrix that are both build by assembling the elementary matrices Akj and
Ckj . Hence the resulting matrix in Eq. 11 is symmetric definite positive and
efficient direct sparse symmetric-positive-definite solvers such as TAUCS can
be used. The vectors Ū and V̄ denote respectively the vector of unknowns uk
and vk.
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In the case of simple Laplacian harmonic maps the matrix C vanishes,
which makes the system of equations (11) uncoupled:

¯̄AŪ = 0̄, ¯̄AV̄ = 0̄. (12)

Finally, in the case of a convex combination map the system of equations
is also uncoupled as in (12), the matrix A being now the assembly of the
following elementary matrices:

Aij =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 (13)

6 Boundary conditions

It is necessary to impose appropriate boundary conditions to guarantee that
the discrete minimization problem has a unique solution and that this unique
solution defines a one-to-one mapping (and hence avoids the degenerate solu-
tion u =constant). Dirichlet boundary conditions are often used for the Lapla-
cian harmonic map and the convex combination map to map the boundary
nodes of ∂M1 to a unit circle:

uD(xi) = cos

(
2πli(xi)

L

)
, vD(xi) = sin

(
2πli(xi)

L

)
. (14)

We have decided to map to a unit circle but all kind of convex fixed bound-
aries could be considered since the mapping is proven to be one-to-one if the
mapped surface is convex [29, 7].

Instead of fixing all the boundary nodes ∂S1 to a convex polygon, one
might fix two (u, v) coordinates, thus pinning down two vertices in the pa-
rameter plane with Dirichlet boundary conditions. Indeed, for least square
conformal maps, the mapping (11) has full rank only when the number of
pinned vertices is greater or equal to 2 [21]. Pinning down two vertices will set
the translation, rotation and scale of the solution when solving the linear sys-
tem LCU = 0 and will lead to what is called a free-boundary parametrization.
It was independendty found by the authors of the LSCM [21] and the DCP [1]
that picking two boundary vertices the farthest from each other seems to give
good results in general. However, the quality of the conformal parametrization
depend drastically on the choice of these constraint vertices. Indeed, global
distortion can ensue and a degradation of conformality can be observed around
the pinned vertices. Figure 4 compares a LSCM with two pinned vertices with
a less distorted LSCM that spreads the constraints throughout the mesh (we
call this approach the constrained LSCM or CLSCM)

How can we define a less distorted least square conformal map (CLSCM)
without pinning down two vertices ? The idea is to add the two following con-
straints to the minimization problem that that set the translation, rotation



8 Emilie Marchandise, Jean-Francois Remacle, and Christophe Geuzaine

a) b) c)

Fig. 4. Initial triangulation ST of a boudda statue a) that has been parametrized
by computing b) the LSCM with two constrained vertices (shown in red) c) the
constrained LSCM solved with a spectral method.

and scale of the solution: (i) the barycenter of the solution must be at zero
and (ii) the moment of inertia of the boundary ∂ST 1 must be unit. Those con-
straints can be taken into account through recourse to spectral theory. This
idea was derived also by Mullen et al. [28] and named after spectral con-
formal parametrization. In what follows, we try to present the spectral
conformal map in a more comprehensive manner than the way it is presented
in [28]. The constrained least square conformal map corresponds to the fol-
lowing discrete constrained minimization problem. Find U∗ such that

U∗ = arg min
U

1

2
UTLCU, subject to UTE = 0,UTBU = 1. (15)

The first constraint in (15) UTE = 0 states that the barycenter of the solution
must be at zero. Indeed, as E denotes the 2I × 2 matrix that is such that
Ei1 = 1, i = 1, ..., I and Ei2 = 1, i = I + 1, ..., 2I (the other entries of E
being zero), the second constraint UTBU = 1 indicates that the moment of
inertia of the boundary must be unit, the B matrix being a 2I × 2I diagonal
matrix with 1 at each diagonal element corresponding to boundary vertices
and 0 everywhere else. There are two different ways to solve this constrained
minimization problem. The first method tries to find the optimum of the
following Lagrangian function L (U,µ) with Lagrange multipliers µi ≥ 0:

L (U, λµ) =
1

2
UTLCU− µ(UTE)− λ(UTBU− 1). (16)

The second method is based on spectral theory that shows that the solution of
the constrained minimization problem Eq. (15) is the generalized eigenvector
U∗ associated to the smallest non-zero eigenvalue of the matrix LC, i.e the
vector satisfying

LCU = λBU, (17)
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where λ is the smallest non-zero eigenvalue of LC. This generalized eigenvec-
tor U∗ is called the Fiedler vector of LC. It can be shown that optimizing (16)
is equivalent to finding the Fiedler vector U∗ (17). From a numerical point of
view, there exists very efficient eigensolvers that find the Fiedler vector U∗ of
the sparse generalized eigenvalue problem we need to solve (17). Those meth-
ods usually proceed through Choleski decomposition (to turn the problem
into a conventional eigenvalue problem) and Lanczos iterations, particulary
fast in our case since we deal with sparse matrices. Softwares libraries such as
Slepc [16] or Arpack [20] provide all those methods for solving the generalized
eigenproblem efficiently.

7 Results

In this section, we present several remeshing examples in order to compare
the three different mapping techniques. We compare timings as well as mesh
qualities for the new triangulations or quadrilateral meshes. The quality of
the isotropic meshes is evaluated by computing the aspect ratio of every mesh
triangle as follows [14]:

κ = α
inscribed radius

circumscribed radius
= 4

sin â sin b̂ sin ĉ

sin â+ sin b̂+ sin ĉ
, (18)

â, b̂, ĉ being the three inner angles of the triangle. With this definition, the
equilateral triangle has κ = 1 and a flat degenerated triangle has κ = 0. The
quality of the quadrangular meshes are evaluated by computing the quality η
of every quadrangle as follows:

η = max

(
1− 2

π
max

k

(∣∣∣π
2
− αk

∣∣∣), 0), (19)

where αk, k = 1, .., 4 are the four angles of the quadrilateral. This quality
measure is η = 1 if the element is a perfect quadrilateral and is η = 0 if one
of those angles is either ≤ 0 or ≥ π.

In the first example, we compare the convex combination map and the
harmonic map. The convex combination seems attractive from a mathemat-
ical point of view and is widely used in the computer graphics community.
However, we show in Fig. 5 why in the context of surface remeshing, this map-
ping should not be not used as default mapping. Indeed, as the metric tensor
Mu = (x,u)Tx,u associated with this mapping u(x) is much more distorted
than the one obtained with the harmonic mapping, there is a negative impact
on the quality of the resulting mesh. This is illustrated in Fig. 5 where an ini-
tially low quality triangulation ST has been remeshed with a parametrization
computed with either the convex combination map or the Laplacian harmonic
map. For this example, the total time for the parametrization and the remesh-
ing is 0.008s. A Delaunay planar mesher has been taken for the remeshing in
the parametric space.



10 Emilie Marchandise, Jean-Francois Remacle, and Christophe Geuzaine

a) b) c) d)

Fig. 5. Poor quality initial triangulation ST (a) that has been remeshed using
a harmonic map (top figures) and a convex combination map (bottom figures): b)
mapping of the initial mesh onto the unit disk ST ′ with iso-x and iso-v values in red,
c) the determinant of the mesh metric tensor Mu that defines the area distorstion
map and d) the final mesh obtained using the 2D Delaunay algorithms.

In the next example, we compare the remeshing of a human aorta with
both the Laplacian and the conformal map. As the geometrical aspect ratio of
the triangulation is high, the initial mesh has been automatically split by our
algorithm into two different mesh patches. The splitting has been performed
with our max-cut mesh partitioner based on a multiscale Laplacian map [24].
As can be seen from Fig. 6, the mapped meshes computed with the Laplacian
map present much more distortion close to the boundaries. Again, as most
of the planar meshers are more efficient with less distorted meshes, we have
that the qualities of the resulting meshes are higher for the conformal map.
Indeed, for a radius dependent isotropic remeshing of the aorta, we obtain a
minimum quality of κmin = 0.04 for the harmonic map and κmin = 0.39 for
the conformal map. The mean quality is κ̄ = 0.91 for the harmonic map and
κ̄ = 0.96 for the conformal map. Here, a Frontal planar mesher was chosen for
the remeshing in the parametric space. The initial triangulation of the aorta
contains 12000 triangles and the remeshing procedure for a new mesh of 5500
triangles took us less than 4s.

We now compare our three mapping techniques for the remeshing of a
tooth of very low quality. Fig. 7 shows the remeshing of the tooth and com-
pares the quality of the remeshing procedure using successively a Laplacian
map, a conformal map and a convex combination map and choosing a Frontal
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a) b) c)

Fig. 6. Remeshing of an STL triangulation of a human aorta that has been split
into two mesh patches (a). (b) Harmonic mapping and conformal mapping (c) for
those two patches.

mesher for the remeshing procedure. As can be seen from Fig.7, the confor-
mal parametrization gives rise to the highest quality mesh while the worst
is found to be the convex combination map. The Laplacian mapping has a
slightly lower quality that can be explained by a loss in conformality at the
boundaries that gives rise to a less smoother mesh metric. The initial trian-
gulation contains 1800 triangles and the remeshed tooth contains about 9000
triangles. The total time for the remeshing is less than 0.8s for all of the three
mappings. The specific time for the computation of the convex map is 0.13s,
the harmonic map is 0.14s and the conformal map is 0.19s.

An important element in the surface remeshing algorithm is the choice of
the planar mesh generator to remesh the parametrized surface. In table 1, we
compare the quality of the tooth surface meshes using three different planar
mesh generators implemented in Gmsh: a Frontal-Delaunay algorithm [30], a
planar Delaunay algorithm [13] and an algorithm based on local mesh adap-
tation (called MeshAdapt, see [14] for more details). Table 1 shows clearly
that the best planar mesh generator is the Gmsh’s Frontal-Delaunay algo-
rithm. This is not a surprise: frontal techniques tend to produce meshes that
are aligned with principal directions. If the planar domain that has to be
meshed is equipped with a smooth metric that conserves angles (i.e., when
the mapping is conformal), then the angle between the principal directions is
conserved. Frontal algorithms also tend to produce excellent meshes for har-
monic maps since harmonic maps are almost conformal except close to the
boundaries. The use of Frontal meshers enables us to obtain higher quality
mesher from the conformal or harmonic maps. It should be noted that in
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Fig. 7. Remeshing of a tooth with different mappings and with a planar Delau-
nay mesh generator. Top figures show the initial STL triangulation and new mesh
based on the conformal mapping and the bottom figures show the quality histogram
obtained when remeshing the STL file with different mappings. The bottom right
figure shows a zoom of the quality histogram.

this case the Frontal mesher was not able to build a mesh given the convex
combination map.

Mesh generator Convex map Harmonic map Conformal map
κmin κ̄ κmin κ̄ κmin κ̄

MeshAdapt 0.05 0.83 0.17 0.94 0.57 0.95
Delaunay 0.002 0.87 0.18 0.94 0.54 0.94
Frontal - - 0.36 0.95 0.65 0.96

Table 1. Quality of the surface mesh of the tooth using different planar mesh
generators for the remeshing of the parametric space, where the parametric space
has been computed with the 3 presented mappings. The qualities we look at are the
the minimum aspect ratio κmin and the mean aspect ratio κ̄.

Next, we compare the proposed method with other remeshing packages
presented in the literature. We consider the well-known standford bunny mesh
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model of 70k triangles3 (see Fig.8). The original mesh has 5 holes and is of zero
genus. For the remeshed bunny of 25k triangles presented in Fig.8, we have a
minimum quality of κmin = 0.56 and a mean quality is κ̄ = 0.97. We compare
the timings for the conformal map. Prior to computing the parametrization,
two different mesh partitioners have been called: a multilevel mesh parti-
tioner (Metis) and a max-cut mesh partitioner based on a multiscale Laplacian
map [24]. The timings for the harmonic and convex map are almost similar.
We compare in Table 2 some statistics and timings of our algorithm with the
least square conformal map (LSCM) of Levy et al. [21], with the multireso-
lution remeshing of Eck et al. [8] and with the angle based parametrization
(ABF) of Zayer [39]. We can see from Table 2 that our method is quite com-
petitive in terms of computationl time with the other methods presented in
the literature.

Fig. 8. Remeshing of the bunny mesh model of 70k triangles that has been split
into 2 mesh partitions. Left figure shows the two partitions, middle figure shows
the conformal harmonic parametrization that has been computed for both mesh
partitions and right figure shows the remeshed bunny with about 25k triangles.

In the last example, we show that one advantage of conformal mappings is
that they can be used to produce quadrilateral meshes given an efficient pla-
nar quad meshing algorithm. Indeed, as quadrangular meshes are by definition
not isotropic but aligned in some directions, one should have a parametriza-
tion that preserve the angles between those directions. Indeed, with such a
parametrization, the quads that are created by the planar quad mesh genera-
tor will preserve their angles in the 3D space. The only parametrization that
preserve angles (in a least square sense) is the conformal parametrization. Fig-
ure 9 shows the quadrangular remeshing of half a Falcon aircraft. An initial
triangular surface mesh has been generated using a standard frontal surface
mesher. Triangles of the surfaces have been patched together to create 12 com-

3The model can be downloaded at the following web site:
http://www.sonycsl.co.jp/person/nielsen/visualcomputing/programs/bunny-conformal.obj
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Remeshing Number of Partition Parametrization Total remeshing
partitions time (s) time (s) time (s)

LSCM Levy [21] (1.3Ghz) 23 30 95 −
Eck [8] (1.3Ghz) 88 - - 33.5

ABF++ Zayer [39] 2 - 13 -
LinABF Zayer [39] 2 - 2 -

Presented method (2.4Ghz)
* laplacian partitioner 2 16.7 1.4 25
* multilevel partitioner 10 7 1.4 14

Table 2. Remeshing statistics and timings for the remeshing of the bunny mesh
model of 70k triangles (new mesh of 25k triangles) with a conformal map. Compar-
ison (when available) of the presented method with other techniques presented in
the Computer Graphics community.

pounds of surfaces to be parametrized (only 7 of them are visible in Fig. 9).
The colors of the triangles indicate the different compounds of surfaces of the
model. The images of the different surfaces on their parameter plane can be
seen on Figure 10. The quadrilateral mesh has been obtained with the new
Delquad algorithm [31] that generates nearly right triangles combined with
the Blossom-quad recombination algorithm [32] that recombines all triangles
into quads. The resulting mesh is presented on Figure 9 (bottom). The mesh
is composed of 53297 quadrangles. The total time for the surface meshing is
22 seconds. This includes

• The reparametrization of the 12 surfaces (3 sec.),
• The Delquad algorithm applied to the 12 surfaces (10 sec.),
• The Blossom-quad recombination algorithmithm applied to the 12 surfaces

(9 sec.).

For the example of the quad mesh of the Falcon aircraft, the worst and
average quality of the mesh are ηmin = 0.17 and η̄ = 0.86 which can be
considered as excellent.

8 Conclusion

We presented three different ways to compute discrete mappings. The imple-
mentation of those mappings as well as the boundary conditions are presented
in a very comprehensive manner such that it becomes accessible to a wider
community than the one of computer graphics. We showed that the conformal
mapping is the best input for our planar meshes and that this mapping allows
to generate high quality meshes both triangular and quadrilateral. The overall
remeshing technique based on discrete linear parametrization is efficient and
renders high quality meshes.
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Fig. 9. Initial triangular mesh of half of the Falcon aircraft that has been split into
12 different colored mesh patches (only 7 of those patches are visible) (top) and final
quadrangular mesh (bottom).
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Fig. 10. Spectral conformal parametrization of the 7 visible surfaces patches (see
the colored patches on top Fig. 9) of the Falcon aircraft in the parametric plane.
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